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The present paper and part 2 (adjacent) study the sound field produced by a 
convected point quadrupole embedded in and moving along the axis of a round 
plug-flow jet. Only subsonic eddy convection velocities are considered. We 
examine cold jets here and hot jets in part 2. A principal feature of the study is 
extensive comparison with jet-noise data. It appears that this simple model 
problem succeeds in explaining all the major interesting features of jet-noise 
data, on both hot and cold jets, for jet exit velocities in the low supersonic range. 
Particular success is achieved in explaiiiing aspects of the data not explainable 
by the Lighthill acoustic-analogy approach. The picture of jet-noise generation 
that emerges (at least for jet velocities in the low supersonic regime) is in many 
respects a striking reaffirmation of the Lighthill point of view. It appears that 
there is an intrinsic or universal distribution of compact quadrupoles, whose 
strength and frequency distribution scale with the jet velocity and nozzle dia- 
meter as would be expected from simple dimensional reasoning, responsible for 
jet-noise generation. These quadrupoles are of course convected by the mean 
flow and satisfactory agreement with the data is obtained by assuming that they 
are devoid of any intrinsic directionality. There appears to be no significant jet 
Mach number (compressibility) or jet temperature effect on the scaling of this 
intrinsic distribution. The essential improvement over the Lighthill analysis is 
the incorporation of mean-flow shrouding effects on the radiation of the con- 
vected quadrupoles. It is perhaps no exaggeration to claim that, with the incor- 
poration of such a shrouding effect, the problem of scaling jet noise with regard 
to the jet velocity, jet temperature, jet size and the angle from the jet axis 
appears to be completely resolved. (The ‘scaling ’ principle cannot of course be 
very simply expressed and in fact needs calculations of the sort contained in the 
present paper to irnplement it.) 

1. Introduction 
The generation of aerodynamic noise by free turbulence received its first 

quantitative formulation in the papers of Lighthill (1 952, 1954). The principal 
quantitative step achieved by Lighthill was his rearrangement of the continuity 
and momentum equations to yield 

azp/atZ - a: v2p = a2qi/axi axi . . . , (1)  
48  F L M  73 
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where Tij = puiui +pii - agpSii. p denotes the density, a, a reference speed of 
sound, (pi?) the compressive stress tensor and u, denotes a velocity component. 
Sii is the Kronecker delta function. Even if we assume that pii can be approxi- 
mated by psi,, where p is the pressure, there are two major problems in the use 
of (1). First, even in cases where the pressure and density are related in an isen- 
tropic fashion, for a thermally stratified flow such as a hot jet the relation 
dp = a2dp would require employing different values of a2 in the different regions 
of the flow (i.e. no one value of at could be used to eliminate the source term 
pi? - a; p Sii). Second, even if the part pii - at p Sii of Tij is ignored (as is reasonable 
for cold jets), the equation 

can be used only to derive an integral equation for p (assuming the uiui are 
known). This difficulty was circumvented by Lighthill (1952, 1954) by his 
approximation of puiui on the right-hand side of ( 2 )  by piuiui, where pi is the 
mean jet density. 

On the basis of (2) (with puiuj approximated by p ju iu j ) ,  Lighthill produced 
his famous intensity law (1962), to wit that the far-field intensity varies as 

p; V;D22F(8) 
I -  

poag R2( 1 - M, cos 8)5 " *  ' 
(3) 

Here T$ denotes the jet exit velocity, D the nozzle diameter, R the radius of 
measurement, p, the ambient density, a. the ambient speed of sound, M, the 
eddy convection Mach number (usually taken as about 0.65l$/aO) and 8 the angle 
from the jet axis where the intensity is measured. F(8) would be the 'intrinsic' 
directionality factor for the quadrupoles. Lush (1971) concluded by an examina- 
tion of the overall intensity patterns at low jet velocities (where convection 
effects are small) that S(8)  was approximately unity, i.e. independent of 8. 
In  what follows we shall also assume S ( 8 )  to be independent of 8. The theory is 
of course valid only for M, < 1 (subsonic eddy convection speeds). As Ahuja & 
Bushel1 (1973) have pointed out, for cold jets (when pi - p,), (3) actually yields 
a potentially extremely valuable scaling principle. It suggests that, if the far- 
field sound pressure level SPL at a particular frequency f and angle from jet 
axis 8 is analysed by plotting the quantity 

Q SPL- ioiog(q/qef)*- i o i o g ( q ~ ) 2 -  i o i o g [ ( i - ~ , c o ~ ~ ) - 5 1  

P = p / q ( i  - M, cos 8) 

(where qer denotes a reference velocity) against a frequency parameter 

(this factor denoting a source Strouhal number allowing for a Doppler shift of 
the source frequency), one should, according to the Lighthill analysis, obtain a 
universal curve of Q ws. P regardless of the jet velocity, frequency or angle of 
observation, nozzle size or radius of measurement. To account for heating effects 
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the parameter Q should be modified to 

Q - 10 log (P$/PX) 
(where pref denotes a reference density). 

Recent careful experimental studies by Lush (1971), Ahuja & Bushel1 (1973) 
and Hoch et al. (1972) have shown that such a scaling principle is not able to 
collapse the data onto one universal curve. For cold jets, it  is found that for low 
values of P an expression of the form (1 -M,cos0)-5 in (3) underestimates the 
variation of noise with angle. Conversely, at high values of P a factor of 
the form (1 - M, cos 0)-5 overestimates the variation with angle. For hot jets, 
the daka of Hoch et at. (1972) appears to be best correlated by replacing pi” in (3) 
with py, where w itself is dependent on Q/a,, 0 and P. It is only for values of 
F/ao in excess of about 1.3 that w approaches 2. Also the effects of heating 
generally cause the relative spectrum of the far-field pressure to be progres- 
sively biased towards the lower frequencies. 

The principal contention of this part of the present study is that for unheated 
jets most of these discrepancies can be resolved if, while retaining the Lighthill 
notion of ascribing jet noise to convected quadrupoles, we account for the fact 
that the eddies do not communicate directly with the ambient atmosphere but 
are subject to a shrouding effect of the mean jet flow. Mathematically this 
entails further manipulations of (1) to extract explicitly the influence of the 
mean flow and arrive at an equation which is clearly in the form of an inhomo- 
geneous wave equation driven by convected, solenoidal, turbulent velocity 
fluctuations. Such a development was originated by Phillips (1960) and has been 
developed more fully by Lilley (1972) and Goldstein & Howes (1973). Historically 
the Lilley-Goldstein development appears to have been first anticipated by 
White in an appendix to Eldred et al. (1963). The present study may be regarded 
as a simplified attempt to solve equations of the type derived by Lilley and 
Goldstein & Howes where, in the interest of obtaining closed-form solutions and 
motivated by the desire to avoid obscuring the physics by complicated numerical 
approaches, the jet flow is modelled as a simple, round, plug-flow jet. The 
reader’s attention is also drawn to the work of Tester & Burrin (1974) and 
Berman (1974), who have expounded ideas very similar to those contained in 
the present study. The papers of Ribner (1960,1962), Powell (1960) and Csanady 
(1 966) also deserve mention as having drawn attention to mean-flow shrouding 
effects. 

It is appropriate at this stage to point out that it is still a matter of substantial 
controversy as to how relevant the equation developed by Lilley (1972) (the 
homogeneous form of which is identical to the compressible Orr-Sommerfeld 
equation employed in the study of stability of parallel shear flows) is to the 
problem of noise from high-speed jets. In  a recent series of lectures, Ffowcs 
Williams (1975) has explained this point of view in some detail. One way of 
looking at Lighthill’s acoustic-analogy approach would be as follows. Linear 
source-free acoustics of a uniform stationary medium are governed by the 
acoustic equation 

ptt - at Vzp = p o p  = 0. 
48-2 
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Linear acoustics of the same medium including a source distribution s(Z, t )  are 
governed by go p = s(Z, t ) .  This means that the equivalent sources in an analogy 
with the acoustics of a stationary uniform medium are determined by the extent 
to which ptt is not fully balanced by aiV2p. By his ingenious manipulation of the 
equations of motion, Lighthill showed that this imbalance was exactly 

a=Tiipxi axj. 
The studies of Lilley etc. may be viewed similarly as follows. The equation 
governing the linear propagation of sound in a parallel shear flow is the Orr- 
Sommerfeld equation (0s = 0). One may then say that Lilley etc. sought to 
develop an analogy with linear propagation of sound in a parallel shear flow by 
seeking to determine by use of the full equations of motion and energy the 
extent to which 0s + 0 and calling this the source term. As Ffowcs Williams 
(1975) has explained, several objections can be raised to this approach. The most 
serious of these objections is as follows. An exemplary feature of S$p = s(5, t )  
is that the only unique solution to this equation satisfying the radiation condi- 
tion of outgoing waves when s(5,t) 3 0 is p F 0. In  other words, Lighthill’s 
equation has the appealingly self-consistent aspect that no sources imply no 
sound. This, unfortunately, is not true of Lilley’s equation because the homo- 
geneous equation 0s = 0 does admit non-trivial time-dependent unstable wave 
solutions leading to acoustic radiation in the far field. Other less serious objec- 
tions to Lilley’s equations have also been explained by Ffowcs Williams (1975). 
Analytically i t  is very difficult to solve in closed form the equation 0s = s(5, t ) .  
One has, in practice, to resort to numerical techniques (see, for example, Tester 
& Burrin 1974; Berman 1974). Second, the rationale behind the Lilley approach 
based on the 0s equation is to some extent based on regarding the events 
leading to jet noise as small departures from a basically steady, laminar, 
parallel shear flow. With occasional flow reversal and local fluctuating velocities 
sometimes as high as 40% of the local steady velocity, such a view is clearly 
difficult to defend. Finally, the effect of attempting to calculate the degree 
to which 0s 0 generally leads to expressions lacking the simplicity of the 
residual a2Zyaz, hi calculated by Lighthill. I n  fact further progress by Lilley’s 
approach (as will be explained shortly) can only be made by employing intuition 
to decide which are the ‘most important ’ parts of the residual 0s 9 0 from the 
point of view of jet noise. 

In  the present author’s view, substantial as these objections are, they do not 
vitiate the use of Lilley’s equation for the study of the effects of mean flow on 
jet noise. As has been pointed out more or less elegantly by Ffowcs Williams, 
Crow, Phillips, Doak and Lilley in a variety of contexts, the unwary initiate to 
aerodynamic noise starting with the papers of Lighthill needs to be repeatedly 
warned that writing down Lighthill’s equation is not the end of the study of the 
subject, which in fact involves compressible unsteady nonlinear flows that are 
not amenable to exact calculation to this day. Advances have occurred only to 
the extent that intuition has been employed to suggest a cause-and-effect 
relation, the cause being estimated intuitively and the effect calculated according 
to the equations of linear acoustics by implicitly assuming that the effect does 
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not influence the cause. A certain arbitrary splitting of a string of terms derived 
from the equations of motion by an equals sign followed by estimates of the 
terms on the right-hand side of the equality is a characteristic feature of the 
subject. The work of Phillips (1960) was the first major departure from the 
Lighthill point of view. All that Lilley (1972), Goldstein & Howes (1973) etc. 
have suggested is that the right-hand side of Phillips’ equation is still not free of 
terms linear in the fluctuating quantities and that taking the material derivative 
of Phillips’ equation serves to eliminate all terms linear in the fluctuating quan- 
tities from the right-hand side. At this point one has to draw on the selective 
discrepancies of the Lighthill theory/data comparison revealed by the work of 
Lush, Hoch, etc. to conclude that perhaps the missing element in Lighthill’s 
work is the neglect of the effect of the mean flow on the radiation by the ‘source ’ 
elements. It is difficult, having come to  this conclusion, to resist linearizing the 
left-hand side of such an equation and drawing an analogy with stable sound 
propagation in a laminar parallel shear flow, the inference being that this is the 
dominant flow interaction effect. Of course there is no way of rigorously proving 
this from first principles for the reasons given by Ffowcs Williams, Crow, etc. 
and alluded to earlier. All that we can do is to accept the Lilley equation as one 
step beyond the Lighthill equation. It certainly appears to be in the right 
direction though how much so can be determined only by an attempt to exercise 
its full consequences and carry out comparisons with available data, particularly 
data on the aspects not explainable on the basis of Lighthill’s work. To the 
present author at least, grappling with the equations of Lilley and Phillips and 
appreciating the gross nature of the approximations needed even with these 
equations to make a plausible and tractable ‘ cause-and-effect ’ connexion with 
jet noise proved an essential prerequisite to even understanding the significance 
of remarks such as that of Crow (1970) that the ‘‘problem of aerodynamic sound 
is not closed by the assertion that Tij accounts for all the phenomena of com- 
pressible, rotational flow ”. 

In  the light of these remarks, it  is appropriate to consider again some of the 
specific objections to Lilley’s formulation. With regard to the unstable solutions 
to the 0s equation, the point is that it is precisely these instabilities that have 
created jet turbulence and therefore one ought, in fact, deliberately to ignore 
such contributions in a passive-analogy model that attempts to calculate the 
far-field radiation (known observationally to be stable, bounded and repeatable) 
from sources whose qualitative features are inferred from our admittedly limited 
knowledge of jet turbulence. One must not however press this point too far for 
Ffowcs Williams ( 1 9 7 4 ~ )  has pointed out that for flows of sufficiently high 
speed the distinction between instability waves and acoustic waves disappears 
and indeed there are far-field phenomena such as the ‘crackling’ of high-speed 
jets that are a direct acoustic consequence of large-scale jet instability. The 
present paper is not germane to such high-speed phenomena and we deliberately 
avoid specifying the precise jet velocity at which these occur (though experi- 
mental evidence places these as occurring a t  jet velocities greater than about 
2.5 times the atmospheric speed of sound). 

The analytical difficulties associated with solving 0s = s(Z, t )  are avoided in 
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the present study by the following approximation. First the inhomogeneous 
form of the 0s equation developed by Lilley is used to identify the dominant 
source elements of s(X, t ) .  Once these have been identified, it  is recognized that 
the solution of the problem z O s p  = s with a known s characterized by low 
frequencies (Pas denotes the linear Orr-Sommerfeld operator with variable 
coefficients) can be obtained approximately by solving the problem of noise 
radiation from the same source elements embedded in a plug-flow jet. We simply 
employ the well-known result from the acoustics of inhomogeneous media that, 
if the inhomogeneity occurs over a length much smaller than a wavelength, a 
good approximation is obtained by treating the inhomogeneity as a step- 
function discontinuity and employing correct matching conditions across it. 
Thus, in the present study the plug-flow model is used only as an analytically 
convenient low frequency approximation. 

There is no doubt that the objection to Lilley’s work that it views jet turbu- 
lence as a small perturbation superposed on a laminar parallel shear flow is 
valid. All one can do is to repeat the point made earlier that, inadequate as this 
view is, it certainly represents a valid first attempt to incorporate the influence 
of the flow on the radiation by the source elements. The last point concerning 
Lilley’s equation, that it leads to complicated source terms, seems no more 
than a reflexion of all the difficulties of trying to deal exactly with compressible, 
rotational, unsteady, nonlinear flows. 

In  concluding the introduction, it is perhaps worth noting that Lighthill 
(1954, pp. 11, 12) himself was somewhat concerned as to how well the reader 
would accept the idea of quadrupole convection without inclusion of the effect 
of the jet flow itself on the radiation by the quadrupoles. He discusses the prob- 
lem at some length in the cited reference and concludes by conceding that, in 
his model, “the quadrupoles can move but not the fluid”. Since the convection 
of the quadrupoles is itself an effect arising from the jet flow, it appears somewhat 
artificial to neglect the flow of the jet fluid and yet retain eddy convection. 
Lighthill probably regarded his work as a valid low frequency theory (under this 
condition the jet flow was presumed by him to be acoustically compact and 
hence ignorable). But one of the most interesting conclusions of the present 
study is that presence of the jet flow affects both low and high frequency radia- 
tion. Thus the Lighthill analysis leading to (3) is not a valid low frequency limit. 
To describe the Lighthill analysis leading to (3) as a valid low jet Mach number 
limit appears somewhat gratuitous as it was precisely the motivation to extend 
his results to high jet Mach numbers that led Lighthill to develop the result (3). 
In  any case, when hot jet flows are considered, it emerges that (3) is not a valid 
low Mach number result either. In  fact in the case of the noise of heated jets with 
low velocities some fairly profound differences from the Lighthill point of view 
arise upon the inclusion of the effect of the jet flow. Crudely speaking, there is now 
a need to revise significantly one’s ideas about both the right-hand and left-hand 
side of (1). Lilley’s elegant formulation (1972) reveals both mean-flow shrouding 
andadditional source terms due to thegradient ofthe mean density or temperature. 
Because the noise of heated jets exhibits so many unusual features, it was decided 
to deal with that problem separately in part 2 of the current study. 
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2. Formulation and method of solution 
Both Lilley (1972) and Goldstein & Howes (1973) have developed equations 

in which, under certain restrictions, a more explicit relation than (1) can be 
obtained in so far as the generation of aerodynamic noise is concerned. Lilley’s 
development is very briefly sketched below so as to indicate clearly the assump- 
tions. 

Consider an inviscid non-heat-conducting gas. The continuity, momentum 
and energy equations (in the absence of heat, mass and momentum sources) 
can be written as 

where DIDt denotes differentiation following the fluid. Also let r = log (p /po ) ,  
where p ,  is a reference pressure. Then, eliminating p from (4)-(6), we may deal 
with the equations 

Dr au, 
- + y - - 0 ,  Dt ax, 

Du, ar 
y- +a2- = 0. Dt ax, 

(7) 

Lilley (1 972) next decomposes all the field variables ujr r and a2 into a steady part 
and a fluctuating part, i.e. as ui = ii3+ui, etc. The mean values of (7) and (8) 
are next subtracted from (7) and (8) themselves. Lilley’s (1972) equation follows 
from manipulations of (7) and (8) and three additional assumptions, namely 
(a)  that the mean flow is a t  constant static pressure, ( b )  that whenever second- 
order products of fluctuating quantities such as r’u;, rt2,  (a2)’ui, (a2)’r’ and 
[(a2)’I2 appear they may be neglected (however second-order velocity products 
of the form u;u; are retained) and (c) that the mean flow is unidirectional (say 
U, = V,S,,) and varies in only one direction normal to the x1 direction (say along 
the x2 direction). Also 2 is a function only of x2. This leads to Lilley’s equation: 

From this point on, Lilley’s equation needs an interpretation similar to that by 
Lighthill of (2).  The quantity r’, for values of$ small compared with the ambient 
pressure p A ,  may be shown to be equal to p’/p,. The u; on the right-hand side 
of (9) are regarded as the known, solenoidal, turbulent velocity fluctuations and 
(9) then provides the required correct inhomogeneous wave equation for p’/pA 



7 60 R. Mani 

driven by the turbulent velocity field. The improvement of (9) over ( 1 )  or even 
Phillips’ (1960) equation is that the source term is clearly in the form of a 
quadratic function of the fluctuating velocities. The operator D/Dt in (9) stands 
for a/at + Ka/axt.,. We shall deal in the present study primarily with the noise 
produced by the source term 

Both Lilley’s equation (9) and Lighthill’s equation (1) exhibit ‘self-noise’ and 
‘ shear-noise ’ source terms. However, the relationship between the self-noise 
term in Lilley’s equation, namely 

and the shear-noise term in Lilley’s equation, i.e. 

is quite different from that for Lighthill’s equation, where the analogous terms 
would be 

Lighthill’s equation ( 1) suggests the following three notions concerning shear 
noise and self-noise. First, it  appears that shear noise might be much more 
important than self-noise since shear noise is only linear in the turbulent veloci- 
ties while self-noise is quadratic in the turbulent velocities. This is what Lighthill 
(1952, 1954) had in mind when he referred to the ‘amplifying’ effect of mean 
flow gradients on jet noise. Second, i t  appears that the shear noise may be 
responsible for the low frequency sound with the self-noise accounting for the 
high frequency sound. Related to this is the observation by Jones (1968) that 
shear noise should have a convection factor of (1 - M, cos as opposed to the 
(1 - N, cos 0)-6 factor for self-noise. Finally, unlike self-noise, which has an 
isotropic or omnidirectional character, the shear-noise term exhibits a preferred 
axial directionality. In  Lilley’s formulation, the first notion is not true while 
the other two carry over in a somewhat weaker form. The shear-noise term in 
Lilley’s equation is quadratic in the fluctuating velocities as is the self-noise term. 
The self-noise term of Lilley’s equation would be characterized by a higher 
frequency content than the shear-noise term though this difference in frequency 
content appears less substantial when we note the following. The operator D/Bt 
operating on the self-noise term a2(u;u;)/ax, axi essentially multiplies it by 
wo, where wo is a frequency of the self-noise eddy in its own (convected) frame of 
reference. However, the experimental work of Davies, Fisher & Barratt (1963) 
has shown that wo N d V , / h ,  and thus there exists a considerable qualitative 
similarity in frequency content between the self-noise and shear-noise terms of 
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Lilley's equation, though admittedly this inference leans heavily on the experi- 
mental result of Davies et al. Finally, it is true that the scalar function 

associated with the shear-noise term of Lilley's equation has a mildly preferred 
axial orientation as compared with the isotropic function a2(u;ui)/axi axj asso- 
ciated with the self-noise term. The main conclusion of the above analysis is 
that there appears to be considerably less need to differentiate between the 
self-noise and shear-noise terms in (9) than, say, in (2) .  

In  both this part and part 2, we shall deal only with solutions to (9) with a 
source term of the form 

- I  

to be abbreviated as 

where Qij = u;ui. In  a recent study, Ffowcs Williams (19743) concludes from a 
quite different point of view that amplification by mean-flow gradients is 
unlikely to occur. He shows by ingenious manipulation of the source element 
involving (xixj/ci [xiz) a2Z&/ata in Lighthill's equation that this can be recast in 
a form that reveals that only the material derivatives (D/Dt)  of the Z& really 
contribute to the noise, so that for a predominantly unidirectional flow there 
would be no contribution directly from transverse gradients. One further point 
with regard to (9) worth noting is that since the jet flow is at constant static 
pressure 3 can be written as y p d / p z ) .  Then for an r' dependence on x1 and t 
of the form exp [i(axl- wt) ]  and T' small, the homogeneous portion of (9), i.e. 
(9) with the right-hand side set equal to zero, yields that across a thin shear 
layer the quantity 

must be continuous. This is of course equivalent to the usual kinematic condition 
that the transverse acoustic particle displacement be continuous across the 
shear layer. The reason for pointing out this feature of the homogeneous form 
of Lilley's equation (9) is that the homogeneous form of Phillips' (1960) equation 
fails to yield the correct kinematic condition when examined in the limit of a 
vanishingly thin shear layer. 

As indicated in the introduction, in what follows we shall deal with (9) in a 
cylindrical co-ordinate system (see figure 1) where V, = constant for 0 < r < a 
and V, = zero otherwise. The source term is associated with solenoidal turbulent 
velocity fluctuations and hence a suitable choice of a fundamental form for 
Qij would be Q$6(y) 6(z)6(x-Et)exp (iw,t) (where Q!j is a constant), which 
would represent an eddy embedded in the jet, convecting along its centre-line 
at V,. Centre-line eddy convection would be representative of an average 
result for eddies distributed across the jet cross-section. For every eddy located 
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off the axis there is an uncorrelated eddy located symmetrically at the image 
of the first eddy in the jet axis. Some simplified calculations with plane plug- 
flow jet models in Mani (1974) indicate that the average of the results of two 
uncorrelated sources located symmetrically about the jet axis (but still lying 
within the jet) is well represented by the field of one source placed on the axis. 
A similar experimental result for a low velocity jet flow may be seen in figure 
16 of Atvars et al. (1966), where it is shown that the average sound field of two 
sources placed symmetrically off the axis (along the nozzle lip line) is very 
closely approximated by the souhd field of one source placed on the jet centre- 
line. It was these results of Atvars et al. (1966) that were used by Schubert (1969) 
in his extensive numerical study of jet refraction to justify his use of sources 
placed on the jet centre-line. However, in a recent paper, Ffowcs Williams 
(19743) has suggested that the high frequency noise emitted from regions of the 
mixing layer close to the nozzle exit plane ought to be modelled by convected 
sources placed just outside a plane vortex sheet separating the ambient fluid 
from a region of uniform flow. In  this paper the speed of sound in the jet and its 
density are assumed to have the same values co and po as the ambient fluid. 
oo would represent the oscillation frequency of the eddy in its own frame of 
reference. The mathematical problem then involves solving 

inside the jet (0 < r < a) ,  (10) 

where D p t  = a p t  + v, apx, 

(11) 
i a2pi 

c; at2 
and V2p'- -- = 0 outside the jet (r  > a).  

Across the jet/still-air interface p' and the transverse acoustic particle displace- 
ment q should be continuous. The relation between p' and q is 

Dzq - l a p i  

Dt2 Po ar 
- - - -- inside the jet 

and 3 = l ! g  outside the jet. 
at2 po ar 
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We now perform Fourier transformation of (10)-(13) parallel to the z axis. In  
doing so we note that the transform of 6(x - K t )  is exp (iaV,t) (where a is the 
Fourier transform variable). Since exp (iw,t)  6(x - V,t) is the driving term of the 
whole problem, this means that the x , t  dependence of all quantities in the 
Fourier-transform formulation will be exp ( - i a x )  exp [i(w, + aV,) t ] .  This implies 
the following operator equivalence in (lo)-(  13) : 

a/at i(0, + a ~ ) ,  a2/ax2 -as, D/Dt i (w ,  + LXV, - o~v,). 

I n  what follows it is convenient to assume that V, = V ,  = V .  Such an assump- 
tion is consistent with a plug-flow model for the jet flow. This assumption is not 
necessary but it does help to simplify the algebra. Also one can see that four 
types of basic quadrupole solution to (10)-(13) need to be worked out, corre- 
sponding to the x-x, x-y ,  y - y  and y-x types of quadrupole. 

Consider first the x-x case. We may rewrite (lo)-( 13) in the form of a problem 
in the transverse ( y ,  z )  co-ordinates: 

V 2 , , , p ' + ( k ~ - a 2 ) P '  =po&zza26(y)6(z) for 0 < r < a 
(note that V2,,a stands for P/ayz+  a2/az2), ( 1 4 )  

V ~ , , P ' + [ ( k o + a M ) 2 - a 2 ] P '  = 0 for r > a, (15) 

and 
for r > a. 

1 ap 
N =  

p ,o$( l  +aM/ko)2% 

Note that k, = wo/co, M = V/c ,  and that P' and N are the axial Fourier trans- 
forms of p' and TJ. Since we are interested only in propagating solutions in the 
far field, the range of a of interest is - k, / ( l  + M )  < a < k, / ( l  - M ) .  We are 
primarily interested in the solution for P' for r > a and this works out in the 
case of (14)-(17) to be 

for - - ko < a  ,< k, ( 1 8 )  
l + M  

and 

P'(a) = -po&$a2Hf) (&+a) I,!,(bz+a) Hp'(a+a) - 

where a+ is the positive square root [ (k ,  + aM)2- a2]*, &+the positive square root 
(k: - a2)* and &+ the positive square root (a2 -,ti)*. Thus p' can be written as 

p' =- P'(a) exp [ - i a ( x  - V t ) ]  exp (iw, t )  da. (20) 27T l Srn -a 

In  the notation of figure 2,  with x -  V t  = R' C O S ~ '  and r = R'sin0' we may 



7 64 R. Mani 

Observer 

Source at time t 

FIGURE 2 

examine (20) by the method of stationary phase for large R’. The details are 
omitted but we may show that with retarded co-ordinates (R,8) defined as in 
figure 2 and with P’(a) written as P(a) Hf’(a+r), the far-field expression for p‘ is 

ilP(ao) exp (iwot) exp ( - ik, R) 
2 (21) ./rR( 1 - M cos 8) P’ 

where 

= ~ c , c o ~ q ( i - ~ c o s e ) .  (22) 

It is worth noting that &(ao) = Icosin8/(l - M c o s ~ ) .  The result (21) ignores 
the Kelvin-Helmholtz instability associated with the jet/still-air interface. In  a 
recent study (Mani 1974), the reason why such a step is permissible was discussed 
in some detail. Basically the argument is that such instabilities have in fact 
created the jet turbulence and hence should not be included again when analysing 
the radiation due to this turbulence (in this calculation we are assuming the 
turbulent source terms to be known). The real jet flow represents a statistically 
stable system and the plug-flow model is merely an artifice employed in the 
analysis to assess conveniently the mean-flow shrouding effects. 

The Doppler-shift formula is obtained by noting that the time rate of varia- 
tion of the phase w,t - Ic, R in (21) is w,/( 1 - M cos 8) (note that R varies with 
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time). Thus the expression for the far-field pressure due to an x-x quadrupole 
can be written as 

-ipoQ~,w~cos2Bexp [ i (wot-koR)]  
2nZRc3 1 - M cos 8)3 {&+aI{(&+u) Hbz)(a+a) - (a+a) (1 - M cos 8)2Hb2)’(a+a) lo(&+a)) 

for 0 ,< 8 < cos-1 [( 1 + M)-1], where &+ and a+ are to be evaluated for 

a = k,cose/(i-Mcose), 

and €or cos-l [(1+ M)-1] ,< 0 < n as 

- (23) 
p f  I -ipoQ!&w~cos20exp [i(wot-koR)] 

2n2Rc$( 1 - M cos 8)’ {(&+a) J;(&+u) H(,z’( a+a) 
-- (.+a)-( i - M C& e)2 ~ p ( a + a )  J,(~+u)] 

Expression (23) differs in many respects from the corresponding Lighthill 
expression for a freely convected quadrupole. If the expression corresponding 
to (23) had been derived keeping track of the difference between V, and V,, 
the Lighthill expression would be the limit of that expression as K+O with 
non-zero 

v, ( =  C O M C ) ,  

i.e. 

This is of course hardly surprising since Lighthill (1952, 1954) himself stated 
that his model was one in which the eddy moved (i.e. V ,  was arbitrary) but the 
fluid did not (i.e. V, = 0). 

The major difference between (23) and (24) is that in the former the far-field 
directivity is completely frequency dependent. The relevant non-dimensional 
parameters governing the directivity are now M and koa. For 

0 < 8 ,< cos-l[(l + M)-1] 

(the so-called ‘zone of silence’) and high Eoa the exponential nature of the I 
functions is a manifestation of refraction of the sound by the jet. Also, for non- 
zero koa, p’+O logarithmically as 8+0 or 8+n. (Gottlieb (1960) refers to this 
as the ‘Lloyd’s mirror ’ effect.) A most interesting result is obtained by examining 
(23) as k,o-+O (low frequency result): we find that 

-poQ~Zw~cos28exp [i(oot-EoR)] 
4774 R( 1 - M cos q5 PI 

(If the problem were worked with V, $: V,, the expression (1 - M cos 8)5 in the 
denominator of (25) would be modified to (1 - M, cos 0)3 (1 - Ml cos 8)2, where 
N, = x / c o  and Hl = K/c,.) In  other words (24) is not a valid low frequency limit 
(as was mentioned in the introduction). Such a feature of low frequency noise 
emission was first noticed experimentally by Mollo-Christensen & Narasimha 
(1 960) and qualitatively ascribed by them to the influence of the jet flow. Berman 
(1974) has also drawn attention to it, pointing out that it is not an instability 
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effect but rather “the noise generation process is enhanced by a fully stable 
resonance phenomenon ”. 

Equations (25) and (23) to some extent explain why an expression of the form 
(24), due to Lighthill, has seemed to work well in the past, a t  least for the noise 
of cold jets. It turns out, roughly speaking, that (24) underestimates the variation 
of p‘ with respect to 8 a t  low frequencies [when compared with (23)], as is indi- 
cated by (25), while overestimating it a t  high frequencies. The overestimation 
arises essentially because, as pointed by Ribner (1960, 1962), Powell (1 960) and 
Csanady (1 966), a t  high frequencies the radiation of an eddy is primarily governed 
by its own immediate environment (namely the jet flow), with respect to which 
i t  is not convecting at all. Regardless of how high k,a may be, both a+a and 
&+a or &+a approach zero as 8+0 or 7~ and as 8+cos-1[(1 +M)-1]. Because of 
this, it  was not possible to extract a high frequency limit of (23). Besides, a plug- 
flow model of the jet flow is obviously a poor model at  high frequencies. In  any 
event, this feature of underestimation of noise generation a t  low frequencies by 
(24) and overestimation a t  high frequencies is apparently the reason why ex- 
pressions of this type essentially succeeded in explaining jet-noise directivity in 
the past when such directivities were measured for the overall sound pressure 
(i.e. the integral of the pressure spectrum over all frequencies). Jet-noise research 
owes a great deal to the selective plotting of directivities at constant source 
frequencies (i.e. at constant koa) in the manner of Lush (1971), Ahuja & Bushel1 
(1973) and others. It is such displays that have revealed clearly the shortcomings 
of expressions of the form of (24). We should like to conclude this discussion of 
(23) by emphasizing that it is an expression that exhibits simultaneously the 
combined convection-refraction effect, which is so crucial to the determination 
of jet-noise directivity. It also emphasizes the need to plot all jet-noise directivity 
data at constant source frequencies as this is the only directivity plot that can 
be checked directly against an acoustic theory. It is the only manner in which 
we can bypass our current inability to predict the turbulence source spectrum in 
detail. 

Turning now to the sound fields of quadrupoles of x-y type, the transverse 
nature of these singularities turns out to impose a basic difference between the 
way these sound fields were deduced by Lighthill (1952, i954) and the manner 
in which they must be deduced from (10)-(13). The left-hand side of Lighthill’s 
equation consists only of constant-coefficient operators (namely a2/at2 - agV2). 
Also the only boundary condition associated with (1)  is a ‘radiation’ condition. 
This means that having solved (1) with a right-hand side of the form S(x) 6(y) S(z), 
say, one may differentiate this solution in the far jield with respect to xi and xi 
to obtain the results for the higher-order singularities. In  other words the well- 
known reciprocity of the solutions to ( 1 )  with respect to the observer and source 
positions enables one to derive the higher-order singular solutions in the far 
field with relative ease. Equations (lo)-( 13) or Lilley’s equations are however 
homogeneous only in time and in the axial direction (assuming a non-spreading 
jet) and thus only singularities involving derivatives of a source term with 
respect to time or the axial co-ordinate (as is the case for the x-x quadrupole) 
allow such a simple solution procedure. Equations (10)-(13) are inhomogeneous 
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FIGURE 3. (a) To derive the solution at P due to the sources on the left, we may take the 
difference between the solutions at P and P’ due to one source as shown on the right. (a) A 
similar equivalence does not hold for this case. 

with regard to the transverse co-ordinates y and z and hence special procedures 
must be adopted to derive the sound fields of the transverse singularities. Figure 
3 is an attempt to illustrate this difference between Lighthill’s and Lilley’s 
formulation. 

Two approaches may be employed to deal with this situation. The first, more 
general approach is to derive the fundamental solutions for an arbitrary trans- 
verse source position in the jet. This means solving for a fundamental form 

6(x- Vt)exp(iw,t) 6(y-y,,)6(z-zo). 

It is now perfectly admissible to differentiate the far-field form of this solution 
with regard to the source co-ordinates (yo,zo) (and then, if so desired, set yo, 
zo = 0) to derive the higher-order singular solutions. This is because the coeffi- 
cients and boundary conditions associated with (lo)-( 13) are independent of 
the source position, i.e. (yo, zo). The only problem with this approach is that for 
arbitrary (yo, zo) even the first fundamental solution will be non-axisymmetric 
(owing to the asymmetric source location in the transverse pIane). For this 
reason a second, more restricted approach will be adopted in the following. 
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Specializing to the case of an x-y quadrupole, the problem in the y, z plane for 
the transforms P' and N for (10)-(13) is 

(26) V2 ll,z P' - a2P' + kip' = + iap,@,a[b(y) S(z)] /ay  for 0 < r < a, 
Vi,,P' + [(k, + aM)2 - a2] P' = 0 for r > a, (27) 

and 
(29) for r > a. 

1 ap' 
pow;( 1 + a M / k 0 ) 2 a r  

N =  

The solution for P' is (for r > a)  

P' = + iap,&&&+ cos $H(,2)(a+r) 27r Hl2'(a+a) (&+a) I@+a) 

(1 + aM/k,)2 
- @+a) 2Crl""(a+u) &(&+a)) 

I i  

- + )] (30) 

l i  
for k, < a < ko/(l - M )  and 

P' = + ia&&&+ cos $H',2)(&+r) 27r Hl(a+a) (&+a) J;(a+a) 

(.+a) Hp,(a+a) J.(& a 
(1 + aN/k,)2 

for -ko/(l + M )  < a < k,. As before, if we write P' = P(a) Hl2)(a+r), then in the 
far field p' is given by 

-$'(a,) exp [i(wo t - k,R)] 
P' 7 T R ( l - - M C O S 8 )  ' 

2 n 2 ~ c 3 1 -  M cos ~)z{(t;+a) I;(&+a) ~\2)(t;+a) 

with a, = k, cos 8/( 1 - $1 cos 8). Explicitly, then, for the a-y quadrupole 

- ip,w;(a+/k,) cos 8 cos $ exp [i(wot - kOB)] Qi, 
P' 

- (a+a) (1 - M cos e)zHy(a+a) ~ ~ ( a + a ) )  

for 0 < 8 6 cos-1 [(1 + M)-1], where a+ = k,sin8/(1 - M cos8) and&+ = (a2 - k2 0 )  4 
is to be evaluated for a = k, cos 8/( 1 - M cos 8). For COS-~[( 1 + M)-l] < 8 < 7 ~ ,  

- (31) 
- ip,wg(&+/k,) cos 8 cos 4 exp [i(oot - kOB)] &&, 'p' N 

27r2RCi( 1 - M cos 8)2((&+u) J;(a+a) H'l")(a+a) 
- (a+a) (1 - M cos ~ y q a + a )  ~~(d i+a) )  

Equation (31), in addition to the frequency dependence of (23), exhibits another 
significant difference from the Lighthill result for an 2-y quadrupole. This is 
the fact that the explicit convection amplification factor appearing in (31) is 
only (1 - M cos 8)-2 and not (1 - M cos @-a. An additional (frequency-indepen- 
dent) convection factor is contained in &+/k, or E+/k,  and works out to be 

11 - 2M cos8- cos28(1 - M2)1&/(l - M cos8). 

The above expression, in general (especially for 0 < 8 < m2), is less than 

(1  - M cos e)y. 
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FIGURE 4. Phase speed or wavenumber differences between incident and refracted waves. 

This is due to the fact that the enhancement of the phase cancellation (which is 
responsible for the convective amplification) for the transverse component of 
the singularity is now related inversely to the transverse phase speed of the 
sound wave within the flow. As shown in figure 4 for a plane wave, this phase 
speed is (for 0 < I9 < +T) greater than that of the refracted wave outside the flow. 
Such a feature need not be considered for an axial quadrupole because the axial 
phase speeds are matched inside and outside the flow in figure 4. 

The theory for the y-y and y-z quadrupoles can be worked out analogously 
and we give only the final results. 

For 0 < 6 < cos-l[( 1 + M)-l], with the usual definitions of a+ and &+, for the 
y-y quadrupole 

i ~ , & : ~  exp [ i (wot-  kOR)] wl(&+/ko)2 
4n2R( 1 - M cos 0) C: P‘ 

- cos 245 
I;,(&+a) Hf’(a+a) - @+a) (1 - M cosI9)’H(2’)’(a+a) 12(&+a)3 

1. (32) 
1 

+ [(&+a) I;(&+@) Ht’(a+a) - @+a) (1 - M cosI9)2Hb2,’(a+a) 1&2+a)] 

For cos-1[( 1 + M)-l] < 6 Q T ,  the same expression applies except that &+ should 
be replaced by E+ and the I’s by J’s. For the y-z quadrupole, for 

o < 8 < cos-l [(I + ~ ) - 1 1  
- ip,&~,~:(&+/k,)’exp [i(w,t - LOR)] sin 245 

4n24 R( 1 - M cos e)  P’ 

For cos-1[( 1 + M)-7 Q I9 < T ,  a similar expression applies with &+ replaced by 
di+ and the I’s by J’s. 

From (32) and (33), we see that the only explicit convection factor that appears 
is now (l-Mcos8)-1. In  fact this term appears from the stationary-phase 

49 F L M  73 
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method of evaluation of integrals of the form of (20) and represents the purely 
volumetric dilatation effect due to singularity convection identified by Lighthill 
(1952, 1954). When evaluating the intensity, i.e. (p'z), this term will be corrected 
from (1 - M COB 8)-2 to (1 - M cos O)-l to allow for the reduced number of quad- 
rupoles emitting simultaneously (Ffowcs Williams 1963). There are additional 
convection effects associated with the term (&+/k,)2 or (6i+/kJ2 but as with the 
x-y quadrupole these terms are now less than the factor (1 - M cos 8)-2 for 

We should like to conclude this section by pointing out two implications of 
these results particularly relevant to experimental work. Lighthill's equation (1)  
has tremendous simplicity and being essentially devoid of any boundary condi- 
tions (except the radiation condition) has the simple consequence that the direc- 
tionality of the sound field for any convected quadrupole can be written in the 
far field as D(8, q5) (1 - M ,  cos @-3, where D(8, q5) is the intrinsic directionality 
of the stationary quadrupole, which is just xixi /R2 for an i, j quadrupole. As 
we have shown in this section such a simple result is invalid when one considers 
mean-flow shrouding effects. One consequence of Lighthill's result (for his 
equation) was that so far as the far field was concerned the source term 

0 ,< 8 < in. 

where v, was the component of ui or u, along the line joining the source point 
and the observer. This result is sometimes referred to as the Lighthill-Proudman 
form of the source term (Ribner 1969). It has recently gained some popularity 
in the area of source location in jets by cross-correlation of an in-jet measurement 
taken with an instrument such as an optical or hot-wire anemometer (used to 
measure w:) with the output of a far-field microphone (Lee & Ribner 1972). 
Such an identification of poa~v:/at2 as a source term is valid only to the extent 
that Lighthill's equation is valid. It is not a valid source-location procedure if 
we admit the importance of mean-flow shrouding effects and hence the need to 
pose the noise generation problem in terms of convected wave equations. 

Second, the term 

(6i+a) &(6i+a) H',")(a+a) - (1 - M cos 8 ) 2  (a+a) J,(a+a) Hg)'(a+a)), 

which appears in the denominators of (23)' (31)) (32) and (33) with n = 0 , l  or 2 
for cos -l[( 1 -!- M)-l] 6 8 < n, degenerates into a simple constant (2iln) when 
0 = an (when a = 0 and d+ = a+). This is related to the obvious result that, for 
cold jets, one does not expect any mean-flow shrouding effects at the 90" location 
(there being no component of flow along this direction). Thus Lilley's equation 
(for cold jets) yields results at 8 = 90' identical to those of Lighthill's equation. 
Experimentally then, at 8 = 90" one does expect (for cold jets) the scaling prin- 
ciple deduced from Lighthill's equation to work. This means that a t  0 = 90" one 
should get good 8 power-law scaling of the intensity and good Strouhal scaling 
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with regard to jet velocity, nozzle size, etc. This is in fact what recent experi- 
ments on cold jets by Lush (1971) and Ahuja & Bushel1 (1973) confirm, namely 
that the Lighthill theory does work well at 0 = 90”. 

3. Application of theory to experimental results 
In  a recent study, Ribner (1969) has explained how the fundamental solutions 

associated with the various quadrupoles can be employed to derive the axially 
symmetric sound field of a round jet. The results for the contribution due to 
‘ self-noise ’ in his study (which uses Lighthill’s equation ( 1 )  and the associated 
Lighthill-Proudman form of the source function as a basis) are particularly 
relevant here. Ribner (1969) studied the expression for the mean-square pressure, 
and by employing a model of homogeneous isotropic turbulence in their own 
frame of reference for the eddies and by examining the directional average with 
respect to the $ co-ordinate of the sound field, was able to ascribe ‘weights’ to 
the various quadrupole contributions. Essentially, the six basic quadrupoles 
(x-x, x-y, x-z, y-z, y-y and z-x) contribute independently though there are 
weak cross-quadrupole contributions (i.e. of type x-x, y-y, x-x, z-z, y-y, z-z, etc.). 
With some slight liberties, we may derive from Ribner’s study the conclusion 
that the self-noise contribution may be evaluated from the formula 

far-field intensity N (mean-square pressure of x-x quadrupole) 
+ 4 x (circumferential average of mean-square pressure 

of x-y or x-z quadrupoles) 
+ 2 x (circumferential average of mean-square pressure 

of y-y or z-z quadrupoles) + 2 x (circumferential 
average of mean-square pressure of y-z quad- 
rupole) . (34) 

The only difference between the above formula and that of Ribner is the neg- 
lect of the weak cross-quadrupole contributions (i.e. of the x-x, y-y, x-x, z-z and 
y, y, z ,  z types). Both the above formula and Ribner’s more exact result yield a 
basic omnidirectional pattern for the self-noise for Lighthill’s equation except 
for the (1 -1M,cos19)-~ convection effect. The other assumptions used in the 
comparison with the data are as follows. 

(a )  To allow for jet spread, etc., the comparisons are all carried out assuming 
eddies moving a t  65% of the nominal ideal-jet exit velocity in a plug flow, which 
is itself assumed to be 65% of the nominal ideal-jet exit velocity. As noted 
earlier, with a plug-flow jet model, it  seemed inconsistent to allow ‘slip’ between 
the eddy convection velocity and the jet velocity and this assumption seemed to 
be the best compromise. It should be noted that the assumption of eddies con- 
vecting at 65% of the normal ideal-jet exit velocity is one that is commonly 
used by experimentalists (Lush 1971; Ahuja-Bushel1 1973, etc.). We also assume 
centre-line eddy convection to be representative of the average result for eddies 
distributed across the cross-section. 

( b )  The predictions in this part are made by assuming ( p j , c j )  = (po,co) (jet 
density and speed of sound equal to those of the ambient fluid). The principal 

49-2 
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quantity predicted is the directional distribution of the sound pressure intensity 
for fixed values of the nominal jet exit velocity and source frequency parameter 
k,a. This involves combining the results for the various quadrupoles according 
to the formula indicated earlier. As in all jet-noise work, we assume that the 
angle 0 in figure 2 (the angle measured from the position of the eddy a t  the time of 
emission of the acoustical signal reaching the observer a t  the current time) can 
be identified with the angle of measurement from the jet axis quoted by the 
experimentalists. This assumes that the radius of measurement is large com- 
pared with the length parallel to the jet axis over which the eddies may be 
assumed to have a coherent existence. 

(c) As noted in the previous section, the theory of the present paper is basically 
an acoustic theory and hence no attempt is made to predict the turbulence 
source-function spectrum. Thus only relative directional distributions are pre- 
dicted. Hence, in comparisons with the data of Lush (1971) and Ahuja & Bushell 
(1973), one vertical adjustment of the directional distribution to 'best fit' the 
data has been carried out. For this reason, in figures 5-10 no absolute levels are 
shown though the 10 dB increment is clearly indicated. Sometimes it is suggested 
that such comparisons ought to be carried out by anchoring the theory and 
data at the 90" point. This suggestion seems to have at least two deficiencies. 
First (especially at high velocities and low frequencies), the pressure levels a t  
the 90" point are as much as 20 dB below the peak value. It seems unwise to 
anchor the prediction to a location where the pressure levels are orders of magni- 
tude weaker than at the location of peak intensity. Second, most theories of jet 
noise deal with doubly infinite jet columns, thereby failing to account for the 
presence or influence of the tail-pipe on the directivity of the noise. Inclusion of 
tail-pipe effects would give rise to mixed boundary-value problems. Thus we 
should not expect such theories to yield very accurate predictions for 

(in this angular sector one would expect some influence of the tail-pipe). 
( d )  Finally, as in Lighthill's theory, we assume the convected sources to be 

compact. 
With these assumptions, in figures 5-10 computed directivity patterns a t  

constant source frequencies for jet Mach numbers ranging from about 0.35 to 
0.91 are compared with the data of Lush (1971) and Ahuja & Bushel1 (1973). 
Source Strouhal numbers ranging from 0.03 to 1-0 were covered in these two 
sets of experiments and results for four of these are compared with the current 
theory. 

In  general the agreement between theory and experiment appears to be very 
good. The two sets of experiments give data at very comparable conditions and 
it is extremely difficult to pinpoint instances where the theory fails systematically 
with both sets of data. The reduced convective amplification of the transverse 
quadrupoles (see for instance figure 9 between 0 = 60" and 8 = go", where the 
radiation is dominated by the transverse quadrupoles), the reduced amplifica- 
tion at high frequencies and the balance between convection and refraction are 
all correctly predicted and apparent in the data. The reader may refer to both 
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F I ~ ~ R E  5. Comparison with data of Lush for M j  = 0.366 ( Vi = 125 m/s). -, present 
theory. Source Strouhal number: (a) 0.03, ( b )  0-10, (c) 0.30, (d )  1.0. 
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FIGURE 6. Comparison with date of Lush for df, = 0.57 ( vI = 195 m/s). -, present 
theory. Source Stmuhal number: (a) 0.03, ( b )  0.10, (c) 0.30, ( d )  1.0. 
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FIGURE 7. Comparison with data of Lush for M ,  = 0.878 ( Y j  = 300 m/s). ---, present 
theory. Source Strouhal number: (a )  0.03, ( 6 )  0.10, (c) 0.30, ( d )  1.0. 
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FIGURE 8. Comparison with data of Ahuja & Bushell for Mi = 0.363 ( Y ,  = 400 ft/s). 
-, present theory. Source Strouhal number: (a)  0.03, (6 )  0.10, ( c )  0.30, (d )  1.0. 

Lush (1971) and Ahuja & Bushell (1973) to see how well the Lighthill theory, 
leading to a frequency-independent directivity factor (1 - 2M, cos 8)-5, was able 
to correlate the data. A systematic underestimation of the variation with 8 at 
low frequencies and a systematic overestimation at  the high frequencies by the 
Lighthill expression is evident. The refractive effect, of course, is not included 
in the Lighthill theory at  all. 

The only systematic deficiency found is (see figures 7 and 10) the overestimation 
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FIGURE 9. Comparison with data of Ahuja & Bushell for M ,  = 0.546 ( J7j  = 600 ft/s). 
-, present theory. Source Strouhal number: (a )  0.03, ( b )  0.10, ( c )  0.30, (d )  1.0. i\..i 10 dB 
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FIGURE 10. Comparison with data of Ahuja & Bushell for Mi = 0.909 (V ,  = 1000 ft/s). 
-, present theory. Source Strouhal number: (a) 0.03, ( b )  0.10, ( c )  0.30, ( d )  1.0. 

of the refractive dip at the highest velocity (300 m/s and 1000 ft/s) and highest 
source Strouhal number (1.0) covered in these experiments. This is obviously a 
deficiency of the plug-flow model. It is possible that some of this discrepancy 
could be resolved by the suggestion of Ffowcs Williams (1974b) that high source 
Strouhal number emission is modelled better by the use of sources placed just 
outside a vortex sheet separating a semi-infinite region of uniform flow from a 
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stationary ambient half-space. Even in this one instance the radiat'ion aft of the 
peak is quite reasonably predicted by the current model. 

As mentioned earlier, the studies of Lush and Ahuja & Bushel1 along with 
other studies have confirmed that good Strouhal number scaling with respect 
to velocity and nozzle size and a good eighth-power law for intensity va. jet 
velocity are obtained a t  0 = 90" for cold jets. This means (since we know both 
analytically and physically that mean-flow shrouding effects for cold jets are 
absent at 8 = 90") that the intrinsic distribution of quadrupoles generating jet 
noise does follow simple dimensional scaling. That is, the u; and u; do scale with 
T$, wo does vary as V;,/D and there does exist a universal strength distribution of 
Qo/Vj2 against woD/T$. Most important, the success of the Lighthill theory at  
8 = 90" indicates very little (if any) compressibility effect on this distribution 
at least up to sonic jet velocities. The calculations of the present paper give 
procedures for computing the directional distribution of the sound (say in 
decibels relative to the 90" point) for various source frequency parameters 
(which can then be translated into observed frequencies using the Doppler- 
shift formula (1 - Nc cos 0)-l). Unfortunately these distributions are not simply 
expressible as a frequency-independent function (1 - N, cos 8)-5. With the aid 
of a digital computer, however, calculations of the type leading to figures 5-10 
can be executed with extreme rapidity. Except for this need to program the 
results, i t  is true to say that this part of the study has essentially shown that 
there is a frequency-dependent procedure for scaling cold-jet noise with respect 
to the angle from the jet axis, the nozzle size and the jet velocity. The calculations 
(with the assumptions outlined earlier) can be formally carried out up to nominal 
jet velocities of c0/0.65 (corresponding to subsonic eddy convection velocities). 
Agreement with experimental data has so far been shown to be good up to jet 
velocities around sonic. It is likely that the plug-flow model will not be directly 
usable at nominal jet velocities higher than about ~ ~ 1 0 . 6 5 .  In addition, proce- 
dures for dealing with the singularity a t  M,cosO = 1 will need to be devised 
(Ffowcs Williams 1963). 

4. Concluding remarks 
In  the present paper we have attempted to account systematically for the 

effect of the mean flow on the radiation from subsonically convected quadrupoles 
oscillating a t  some frequency in their own frame of reference. Lilley's (1972), 
equation was used to apply the results to the problem of cold-jet noise. In  the 
interest of deriving closed-form analytical solutions and illuminating the physics, 
a plug-flow model of the jet was adopted. Within this framework, one can obtain 
an exact representation of the balance between convective and refractive effects. 
in jet noise. Several novel aspects of the jet-noise problem not discernible at all 
from the Lighthill acoustic-analogy approach have emerged from the current 
study. 

(i) The Lighthill result for the directivity, namely the expression 
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emerges only as the limit for zero jet flow Mach number and non-zero (arbitrary) 
eddy convection Mach number. It is not a good low frequency approximation. 
Indeed the results herein show that, fortuitously, it  is some sort of approximation 
for the variation with angle of the overall sound pressure level. This is because 
of its tendency to underestimate the variation with angle of the low frequency 
sound while overestimating this for the high frequency sound. 

(ii) When mean-flow shrouding effects are included, the technique employed 
by Lighthill to derive solutions for the higher-order singularities is useful only 
for the purely axial singularities, and even that application is possible only if 
the jet flow is assumed to be homogeneous in the axial co-ordinate (non-spreading 
jet). Inhomogeneity of the flow in the transverse direction necessitates special 
procedures for the development of solutions for the transverse singularities. A 
refracted wave emerging from the jet flow into the ambient fluid is characterized 
in the forward arc by a higher phase speed in the transverse direction within the 
flow than outside it. This results in reduced convective amplification for the 
transverse singularities as compared with the predictions of the Lighthill theory. 
Also the frequently employed equivalence of source terms 

(Lighthill-Proudman form) is no longer valid. 
(iii) Extensive comparisons of the theory (with clearly stated assumptions) 

with experiments of Lush (1971) and Ahuja & Bushell (1973) have been carried 
out. The comparisons are for the published directivity plots at constant source 
frequencies for jet velocities from about 100 m/s to nearly sonic velocities. The 
agreement in general is very good especially concerning the new insight provided 
by the current analysis. We refer here to the tendency of the variation with angle 
of the low frequency sound to exceed that predicted by the (l-Mccos8)-5 
formula and vice versa for the high frequency sound. We also refer to the ten- 
dency of the data to exhibit reduced convective amplification between 8 = 60° 
and 8 = 90" as compared with that between 8 = 15" and 0 = 60". This is related 
to the reduced convective amplification associated with the transverse quad- 
rupoles. 

(iv) The data of Lush (1971) and Ahuja & Bushel1 (1973) for the intensity a t  
8 = 90" scale very well on an eighth-power law and those for the frequency on 
f D / 5  (Strouhal scaling). This suggests very little effect of the Mach number (or 
compressibility) on the turbulence source spectrum or the ' intrinsic quadrupole 
distribution' (at least up to sonic jet velocities). Together with the ability of the 
present calculations to predict the variation with angle of the intensity (at various 
source frequencies), it  can be concluded that the problem of scaling cold-jet 
noise with respect to the angle from the jet axis, the jet velocity and the jet 
nozzle size has been essentially solved (within the limitation of subsonic eddy 
convection velocities). 

(v) Finally it should be reiterated that several ideas first advanced by Lighthill 
(1952,1954) have, in fact, been retained. The notion of convected compact eddies 
of quadrupole character radiating noise owing to oscillations of quadrupole 
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strength in their own frame of reference has been adopted in its entirety from 
Lighthill’s work. Analytically, Phillips, Lilley and others have pursued Lighthill’s 
goal of deriving an inhomogeneous wave equation for the fluctuating pressure 
driven by spatial gradients of the solenoidal turbulent velocity fluctuations. 
The principal differences from Lighthill’s point of view are accounting for the 
effect of the jet flow on the radiation by the eddies and the associated abandon- 
ment of the attempt to cast the problem in terms of an analogy with stationary- 
media acoustics. 

I am most indebted to my colleague Ivan H. Edelfelt for invaluable assistance 
in programming these calculations. The study was supported financially by the 
U.S. Air Force and U.S. Department of Transportation under contract F33615- 
73-C-2031. 
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